
Python
An Introduction

Jörg Faschingbauer

www.faschingbauer.co.at

jf@faschingbauer.co.at

1 / 251

Table of Contents

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

2 / 251

Blahblah

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

3 / 251

Blahblah

The Python Programming Language

Interpreted

No compiler (and entire toolchain) needed
Interpreter generates intermediate byte code

Object Oriented

Classes/encapsulation, exception handling, ...
But not mandatory as in Java, for example

Interactive

Python prompt — Interpreter’s interactive mode

For beginners

Simple syntax: indentation instead of explicit block markers
Consistent
“There’s only one way to do it!”

Powerful

Advanced language features: Iteration, yield, ...
Huge library — “Comes with batteries included”

4 / 251

Blahblah

A Little Bit of History

Written and conceived by Guido Van Rossum during the late eighties

Named after Monty Python

First public release 1991 — version 0.9.0

Modern language attributes: classes, exceptions, modules, ...

Version 1.5 (1997)

Major version for a longer time
Several useful features: keyword arguments, functional programming
tools, name mangling/data hiding, ...

Version 2.7 (2010)

Still backwards compatible with all previous versions
Last version of the 2.x series
Only fixes
Promised to be supported until 2020

Version 3.0 (2008)

Incompatible in subtle ways

5 / 251

Blahblah

Guido Van Rossum

Benevolent Dictator for
Life (BDFL)

Oversees Python’s
development process

Born 31 January, 1956 in
the Netherlands

Degree in Math and
Computer Science
(University of
Amsterdam)

Jobs permit at least 50%
work on Python

Google
Dropbox

6 / 251

Hello World

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

7 / 251

Hello World

Hello World : Interactive Mode

Interactive Mode

Python interpreter, invoked without arguments

“Shell prompt”, just with Python

Exit → type Strg + d (End-of-file)

$ python

Python 2.7.9 (default, Aug 15 2015, 22:03:50)

[GCC 4.8.4] on linux2

Type "help", "copyright", "credits" or "license" for ...

>>> print "Hello World"

Hello World

>>>

8 / 251

Hello World

Hello World : Python 3

Major annoyance: Python 3 is not compatible with Python 2

Breaking compatibility is not an easy decision

Necessary (so they say) to clean up >20 years of dirt

First hurdle: print is a statement in 2, and a function in 3

$ python3

Python 3.4.1 (default, Aug 15 2015, 22:12:12)

[GCC 4.8.4] on linux

Type "help", "copyright", "credits" or "license" for ...

>>> print("Hello World")

Hello World

>>>

9 / 251

Hello World

Hello World : Python 2 vs. Python 3

Compatibility strategy: the future module

Enable future features in current versions

Clearly remains valid in the future version

One of many strategies
The remainder of the course will try to be ...

version agnostic
forward compatible
backward compatible

Tataa: the feature print function!

$ python2

...

>>> from __future__ import print_function

>>> print("Hello World")

Hello World

>>>

10 / 251

Hello World

Hello World : Script Files

The first and simplest program ...

hello-world.py

#!/usr/bin/python

omitted from now on

from __future__ import print_function

print("Hello World")

Make it executable, execute ...

$ chmod +x hello-world.py

$./hello-world.py

11 / 251

Syntax etc.

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

12 / 251

Syntax etc.

Syntax: Indentation (1)

Blocks and indentation

Statements that end with a ’:’ introduce a block

Blocks are indented

End of a block is end of indentation

No explicit block delimiters (like ’{’, ’BEGIN’, ...)

Indentation is not only Coding Style, but also Syntax

Careful, you experienced programmers!

New bug type: Indentation Bug

13 / 251

Syntax etc.

Syntax: Indentation (2)

i = 0

while i < 42:

print(’Still not an answer: ’+str(i))

i = i+1

print(’The answer is: ’+str(i))

Keep in mind ...

Indentation must be consistent within one block

... can be mixed otherwise

Tune your editor’s knobs accordingly!

14 / 251

Syntax etc.

Syntax: Statements and Lines

Newline ends a statement ...

answer = 42

Except ...

Multiline statements

answer = str(42) + \

’, but only most of the time’

Braces

print(

"Hello",

"World")

Brackets

message = [

"Hello",

"World"]

Fun

message = (

"Hello " +

"World")

15 / 251

Syntax etc.

Commandline Arguments

Python is lean:

Very few built-in functionality (compared to other languages)

Extension through modules

First (and most used): sys

File args.py

#!/usr/bin/python

import sys

print(sys.argv[0])

print(sys.argv[1])

print(sys.argv[2])

$./x.py one argument

./x.py

one

argument

16 / 251

Syntax etc.

Comments vs. Documentation

As in many other script languages ...

this is a very important comment, which is

definitely worth a read

Docstrings (slightly off-topic)

First string in a function, module, class, or method

Tools to generate documentation from it

def do_something(some_number):

""" Doing something with a number """

some code here ...

>>> print(do_something.__doc__)

Doing something with a number

17 / 251

Variables

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

18 / 251

Variables

Variables (1)

A variable is a name for ... something

Something has a type

... but its name hasn’t

>>> a = 42

>>> type(a)

<class ’int’>

>>> a = 1.5

>>> type(a)

<class ’float’>

>>> a = [42,’blah’]

>>> type(a)

<class ’list’>

19 / 251

Variables

Variables (2)

Python is a “dynamic language” (whatever that means)

Names have no type

Created when first assigned

→ Runtime error when accessed but not yet there

... as opposed to compiled languages (whatever that means)

Naming rules: just like most other languages

Start with Letters (Unicode since Python 3, ASCII in Python 2) or
underscore

Numbers in the following characters

Case sensitive

20 / 251

Variables

Assignment Fun

Multiple assignments in one statement

a, b, c = 1, "Eins", 1.0

a, b = b, a # "swap"

Tuple unpacking

Important concept throughout the entire language

→ later

Assignment has a value

a = b = c = 1

Assignment is right associative

=⇒ a, b, c are assigned ’1’

21 / 251

Variables

Assignment Details

More than one ever wants to know ...

Day-to-day programming does not need to know

Good to know when something goes wrong

Only valid for immutable types (int, float, str)

a = 42

b = a

b = 7

Or equivalently ...

a = 42

b = 42

b = 7

22 / 251

Datatypes

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

23 / 251

Datatypes Numbers

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

24 / 251

Datatypes Numbers

Numbers

Numbers are simplest ...

Integer (int) — sign is irrelevant

Floating point (float)

Complex (complex)

Boolean (bool)

More powerful types ...

Sequences with very powerful operations

Immutable sequences: Strings, Bytes, Tuples
Lists

Sets

Mappings: key to value

25 / 251

Datatypes Numbers

Integer Numbers

Range ...

Represent numbers in an unlimited range — limited by available
memory only

Integer literals ...

Decimal: 1234, -1234

Octal: 01234 == 1*8**3+2*8**2+3*8**1+4*8**0 == 668

Hexadecimal: 0x1234 == 1*16**3+2*16**2+3*16**1+4*16**0

== 4660

Binary: 0b100110

26 / 251

Datatypes Numbers

Integer Numbers: Comparison

Comparison operators
< less than
<= less or equal
> greater than
>= greater or equal
== equal
!= not equal

27 / 251

Datatypes Numbers

Integer Numbers: Arithmetic

Arithmetic operators
+ addition
- subtraction
* multiplication
/ division
// floor division
% modulo
** exponentiation
- negation (unary)

Shortcut: self modification (not only for the + operator)

i = i + 7

i += 7

28 / 251

Datatypes Numbers

Operator Precedence

Boring but important: precedence rules

Exponentiation comes first (binds strongest)

Negation

*, /, % (left associative)

+, - (binary operators)

Comparison operators

Not boring — necessary in programming

If in doubt, use explicit braces: 2 * 7 % 3 != 2 * (7 % 3)

If not in doubt, think about colleagues

If in doubt, use explicit braces

29 / 251

Datatypes Numbers

Floating Point Numbers

Floating point vs. Integer

Operators listed above also valid for floating point numbers

Not unbounded

... otherwise π would consume all memory

Literals

Decimal point: 3.14159265359

Exponent: 2.3e12, 1.5e-34

30 / 251

Datatypes Numbers

Numbers: Python2 vs. Python 3 (1)

Incompatibility alert!

There is no pure integer
division in 3

int only if possible

float otherwise

... as opposed to 2

Reason:

Python is also a
beginners language

There are many other
incompatibilities as well

... the entire object
model has changed

Python 2

>>> 3/2

1

>>> type(3/2)

<type ’int’>

Python 3

>>> 3/2

1.5

>>> type(3/2)

<class ’float’>

31 / 251

Datatypes Numbers

Numbers: Python2 vs. Python 3 (2)

General advice regarding numbers

Do not rely on the division operator (/) to do floor division

Portably, 3/2 != 1

Not easy when coming from Java or C
... or just about any other language

Don’t differentiate between int and float

Use explicit floor division, //

Portably, 3//2 == 1

32 / 251

Datatypes Strings

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

33 / 251

Datatypes Strings

Strings: Python 2

Python 2 strings ...

A string could have just about any encoding

Strings were raw bytes, basically

Everybody had to know where the string came from

Could be ASCII, could be Unicode, could be bytes, could be ...

Type unicode — added as an afterthought

File I/O done without an idea of encoding

Problems ...

Implicit conversions back and forth

Clearly defined but not at all obvious

→ Mixing text and binary

34 / 251

Datatypes Strings

Strings: Python 2 — Confusion

>>> type(’abc’)

<type ’str’>

>>> ’abc’

’abc’

>>> len(’abc’)

3

That was easy

ASCII

>>> type(’äöü’)

<type ’str’>

>>> ’äöü’

’\xc3\xa4\xc3\xb6\xc3\xbc’

>>> len(’äöü’)

6

>>> ’äöü’[0]

’\xc3’

Content comes from
terminal

→ UTF-8 (in my case)

Umlauts are 2 bytes in
UTF-8

→ Gosh!

35 / 251

Datatypes Strings

Strings: Python 2 — unicode (1)

Good news

>>> type(u’äöü’)

<type ’unicode’>

>>> u’äöü’

u’\xe4\xf6\xfc’

>>> len(u’äöü’)

3

>>> u’äöü’[0]

u’\xe4’

Explicit type unicode

Content is typed

(I still don’t get it)

36 / 251

Datatypes Strings

Strings: Python 2 — unicode (2)

Bad news

>>> type(u’abc’ + ’def’)

<type ’unicode’>

>>> type(u’abc’ + b’def’)

<type ’unicode’>

Can be mixed with str

Can be mixed with
bytes (which is another
afterthought)

→ Semantics not
entirely clear

→ Chaos

→ Bugs, bugs, bugs ...

37 / 251

Datatypes Strings

Strings: Python 3

Strings are always Unicode — Basta!

Major reason for the 2 to 3 move

Python 2 Unicode is a mess

No unicode type anymore

No mixing of str and bytes

Sources which create strings know about encodings — and create
Unicode strings accordingly

File I/O

38 / 251

Datatypes Strings

Python 3, Generally

Which version should I choose

Answer 1: Python 3

Answer 2: unless you have a compelling reason not to

Large Python 2 codebase
Ancient distro version (though there are Python 3 packages available
for most)

So much for Python 2 vs. 3 ...

39 / 251

Datatypes Strings

Datatype Conversions

Conversion between types ...

>>> str(42)

’42’

>>> int(’42’)

42

>>> int(’10’, 16)

16

>>> float(’12.3’)

12.3

>>> int(12.3)

12

Conversions

Better viewed as
constructors of the
corresponding types

Common theme across
the language

40 / 251

Datatypes Complex Datatypes

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

41 / 251

Datatypes Complex Datatypes

Complex Datatypes By Example: List, Tuple

Typical “sequence” types ...

List

l = list()

l = [1,2,3]

l.append(4)

l.extend([5,6,7])

l += [8,9]

new_l = l + [10,11]

Mutable: can be
modified in-place

Type: list

Tuple

t = tuple()

t = (1,2,3)

t = (1,)

new_t = t + (4,5)

Immutable: cannot be
modified, only copied

Type: tuple

42 / 251

Datatypes Complex Datatypes

Complex Datatypes By Example: Dictionary

Dictionary

>>> d = dict()

>>> d = {1:’one’, 2:’two’}

>>> d[2]

’two’

>>> d[3] = ’three’

>>> 3 in d

True

>>> del d[3]

>>> 3 in d

False

Associative array

Key → value mapping

Common operations:
insert, remove, query

43 / 251

Datatypes Complex Datatypes

Complex Datatypes By Example: Set

Set

>>> s = set()

>>> s = {1,2,3}

>>> 1 in s

True

>>> s.add(4)

>>> s

{1, 2, 3, 4}

>>> s.remove(1)

>>> 1 in s

False

Bag of elements

No value like dictionary

Membership test is the
most important
operation

44 / 251

Boolean

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

45 / 251

Boolean

Boolean Values

Boolean: the last of the simple ones

>>> 1 < 2

True

>>> ’X’ == ’U’

False

Values True and False

Result of comparison
operators

Used with control flow
statements (if, while)

→ later

46 / 251

Boolean

Boolean Operators

Usual operators ...

L and R: True if both L and R evaluate to True

L or R: True if L or R evaluate to True

not X: True if X evaluates to False

Short circuit evaluation: operands are only evaluated until the
expression’s value is clear

L and R: if L is False, then the expression cannot become True

anymore → R not evaluated

L or R: if L is True, ...

→ important when L, R are functions with side effects

47 / 251

The if Statement

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

48 / 251

The if Statement

The if Statement

Conditional code execution ...

if

if i <= 3:

print(i)

else (optional)

if i <= 3:

print(i)

else:

print(’many’)

elif (optional)

if i == 1:

print(’1’)

elif i == 2:

print(’2’)

elif i == 3:

print(’3’)

else:

print(’many’)

49 / 251

Exercises: Basics

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

50 / 251

Exercises: Basics

Exercises

1 In the interactive interpreter, create an empty list. Append to it
values of types

Integer
Floatingpoint
Boolean
List
Tuple
Set
Dictionary

Does it work? If yes, print the list using the print() function.

2 Do the same in an executable Python program

3 What happens when you access a non-existent dictionary member?

4 Write a program that takes a single digit as commandline parameter.
Print the English word for that digit.

51 / 251

while Loops

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

52 / 251

while Loops

Looping Constructs

Program flow is rarely linear ...

Branches → if/elif/else

Repeated execution → loops

Python has only two looping constructs

while

Handcrafted loop condition
→ very “verbose” coding
Most general looping construct

for

iteration over something sequencish
Iteration ... generators ... yield ... outright genius!
→ later

53 / 251

while Loops

while Loops

General form of a while loop

while condition :

statements

condition is a boolean expression

statements is an indented block of ... well ... statements

Block is executed while condition holds

Example: sum of numbers 1..100

sum = 0

i = 1

while i <= 100:

sum += i

i += 1

54 / 251

while Loops

break and continue

Fine grained loop control ...

break ends the loop
continue ends the current loop and continues with the next —
evaluating the condition

while True:

line = sys.stdin.readline()

for c in line: print(c, ord(c))

if len(line) == 0:

eof seen

break

if line.strip() == ’’:

ignore empty lines

continue

... do something ...

55 / 251

while Loops

Esoteric Feature: while/else

Loops can have an else clause

Entered when loop terminates “naturally”

... not terminated by a break

Natural while loop termination: loop condition evaluates to False

i = 0

while i < 100:

i += 1

number = random.randrange(0,1001)

if number == 42:

break

else:

print(’no answer found’)

56 / 251

Exercises: While Loop

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

57 / 251

Exercises: While Loop

Exercises

1 Write a program that takes an integer commandline parameter and
checks whether that number is prime!

58 / 251

Sequential Datatypes

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

59 / 251

Sequential Datatypes

Sequential Datatypes

Sequential Datatypes are a “sequence” of elements

Strings: sequence of Unicode “code points”

Lists: mutable sequence of elements of any type (→ recursive)

Tuples: like lists, but immutable

Binary data ...

Bytes: like strings, only binary — there is no encoding. Immutable
Byte arrays: mutable arrays of raw bytes

Common set of operations

Indexing
Concatenation
Several specialities: slicing ...

Very powerful (albeit a bit hard to read)

60 / 251

Sequential Datatypes

Sequence Elements

Elements are numbered

Starting at zero

61 / 251

Sequential Datatypes

Sequence Membership

The in operator

>>> 2 in [’one’, 2, ’three’]

True

>>> 3 in [’one’, 2, ’three’]

False

>>> ’three’ in [’one’, 2, ’three’]

True

>>> ’three’ not in [’one’, 2, ’three’]

False

Cool for short sequences

Sequential search

→ probably not the right datastructure for searches

62 / 251

Sequential Datatypes

Sequence Multiplication

String multiplication

>>> ’blah’ * 5

’blahblahblahblahblah’

Arbitrary sequence multiplication

>>> [1, 2, 3] * 5

[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> [’one’, 2, ’three’] * 3

[’one’, 2, ’three’, ’one’, 2, ’three’, ’one’, 2, ’three’]

63 / 251

Indexing and Slicing

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

64 / 251

Indexing and Slicing

Indexing (1)

Accessing the n-th element is straightforward ...

>>> text = "Hello World"

>>> text[0]

’H’

>>> text[6]

’W’

>>> text[-1]

’d’

>>> text[-4]

’o’

>>> text[len(text)-1] == text[-1] # AAH!!

True

65 / 251

Indexing and Slicing

Indexing (2)

Same with other sequences ...

>>> a_list = [’Peter’, ’Paul’, ’Mary’]

>>> a_list[0]

’Peter’

>>> a_list[-1]

’Mary’

>>> a_tuple = (1, ’one’, 1.0)

>>> a_tuple[0]

1

>>> a_tuple[-1]

1.0

66 / 251

Indexing and Slicing

Slicing: Cutting Out

Extracting part of a sequence

>>> text = "Hello World"

>>> text[0:5]

’Hello’

>>> text[:5]

’Hello’

>>> text[6:11]

’World’

>>> text[6:]

’World’

>>> text[6:-1]

’Worl’

>>> text[-5:-1]

’Worl’

67 / 251

Indexing and Slicing

Slicing: Step Width

Killer feature: slices with step width

>>> text = "Hello World"

>>> text[0:7:2]

’HloW’

>>> text[::2]

’HloWrd’

>>> text[:-6:2]

’Hlo’

>>> text[::-1]

’dlroW olleH’

68 / 251

Indexing and Slicing

Slice Assignment

Sub-slice assignment

>>> l = [2, 3, ’a’, ’b’, 7]

>>> l[2:4] = [4, 5, 6]

>>> l

[2, 3, 4, 5, 6, 7]

Prepending

>>> l[:0] = [0, 1]

>>> l

[0, 1, 2, 3, 4, 5, 6, 7]

Appending (but see list methods append() and extend())

>>> l[len(l):] = [8, 9]

>>> l

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

69 / 251

for Loops

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

70 / 251

for Loops

Iteration over ... Something

Iteration: a central concept everywhere

Programs build and manipulate data

... and occasionally (most often?) iterate over data

→ Specialized looping construct: for

for name in [’Caro’, ’Johanna’, ’Eva’, ’Jörg’]:

print(name)

name: loop variable

Valid only within the loop body

Bound to the current element in the list, four times in a row

A list is iterable — many other types participate in this game

71 / 251

for Loops

break, continue, else

Just as with while: usual looping features

break ends the loop — else clause not executed

continue executes block with next element (if any)

haystack = [’straw’, ’mouse’, ’straw’, ’needle’, ’straw’]

for item in haystack:

if item == ’needle’:

break

else:

print("couldn’t find needle")

72 / 251

The range Function

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

73 / 251

The range Function

Iteration over Numbers: range

Rare: iteration using indexed access

Indexed access in C

char hello[] = "Hello World";

for (int i=0; i<sizeof(hello)-1; i++)

printf("%d\n", hello[i]);

Rarely needed in Python

Iteration over data

If needed: sequence of integer numbers

hello = ’Hello World’

for i in range(len(hello)):

print(ord(hello[i]))

74 / 251

The range Function

range: Definition

The range function produces numbers ...

range(100) produces 0, 1, 2, ... 99

range(5, 100) produces 5, 6, 7, ... 99

range(5, 100, 2) produces 5, 7, 9, ... 99

Produces?

Result cannot easily be a list: range(10**9)

>>> type(range(10**9))

<class ’range’>

Generates numbers on demand

→ “Generator”

75 / 251

The range Function

range: Python 2 vs. Python 3

Incompatibility alert:

Python 2: range(10**9) would explode!

Heritage of the old Pre-Generator days

→ Python 2’s xrange() is a generator

If one wants a list in Python 3 (unlikely) ...

l = list(range(10**9))

76 / 251

References, (Im)mutability

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

77 / 251

References, (Im)mutability

Immutability: Numbers

Numbers are immutable ...

Object of type int with value 42
Variable a points to it (“gives it a name”)
The object cannot change its value — there is no method to modify
an integer object
→ The latter situation is equivalent to the former (which is the
implementation)

a = 42

b = a

a = 42

b = 42

78 / 251

References, (Im)mutability

Immutability: Tuples

Same with tuples

Like lists, but immutable

No way to modify a
tuple

No appending
No slice assignment
No nothing

So both of these are
equivalent

To the user, b is a
copy of a

>>> a = (42, "xy", 13)

>>> b = a

79 / 251

References, (Im)mutability

Mutability: Lists (1)

Lists are mutable ...

>>> a = [1, 2, 3]

>>> b = a

>>> b

[1, 2, 3]

>>> b.append(4)

>>> b

[1, 2, 3, 4]

>>> a

[1, 2, 3, 4]

Objects can be modified

E.g. by using append()

80 / 251

References, (Im)mutability

Mutability: Lists (2)

Danger ...

Take care when passing complex data structures

Not passed by copy (as in C++)

Passed by reference (as in Java)

Make a copy if needed

Copying a list

>>> a = [1, 2, 3]

>>> b = a[:]

>>> a.append(4)

>>> b

[1, 2, 3]

81 / 251

References, (Im)mutability

Shallow Copy

>>> a = [1, [1, 2, 3], 2]

>>> b = a[:]

>>> b

[1, [1, 2, 3], 2]

>>> a[1].append(4)

>>> a

[1, [1, 2, 3, 4], 2]

>>> b

[1, [1, 2, 3, 4], 2]

Only first level copied

“Shallow copy”

a[1] is a reference

>>> a[1] is b[1]

True

is: object identity

82 / 251

References, (Im)mutability

Deep Copy

Solution: not easy

Recursive structure traversal

Handling every possible type

Dedicated module in the standard library: copy

>>> import copy

>>> a = [1, [1, 2, 3], 2]

>>> b = copy.deepcopy(a)

>>> a[1] is b[1]

False

83 / 251

Functions

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

84 / 251

Functions

Why Functions?

What is a function?

Sequence of statements

Parameterizabe

Can have a return value

→ Can be used as an expression

Why would one want to do this?

Code structuring

Readability

Maintainability

Code reuse

→ Libraries

85 / 251

Functions

An Example

def maximum(a, b):

if a < b:

return b

else:

return a

max = maximum(42, 666)

def: introduces function definition

maximum: function name

a and b: parameters

return: ends the function — the value when used as expression

86 / 251

Functions

Sidenote: Pure Beauty

There is nothing special about functions

def is a statement

Evaluated during regular program flow, just like other statements

Creates a function object

Points a variable to it — the function’s name

>>> type(maximum)

<class ’function’>

>>> a = maximum

>>> a(1,2)

2

87 / 251

Functions

Parameters and Types

There is no compile-time type check

For good or bad

maximum(a,b): can pass anything

... provided that a and b can be compared using <

“Late binding” → runtime error

→ More testing required

→ Unit testing, module unittest

>>> maximum(1, ’1’)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in maximum

TypeError: unorderable types: int() < str()

88 / 251

Functions

Default Parameters

For the most common case, default values may be specified ...

def program_exit(message, exitstatus=0):

print(message, file=sys.stderr)

sys.exit(exitstatus)

program_exit(’done’)

Default parameters must come at the end of the parameter list ...

Syntax error

def program_exit(exitstatus=0, message):

...

89 / 251

Functions

Default Parameters: Pitfalls

Attention: mutable default parameters may not do what one expects ...

def f(i, x=[]):

x.append(i)

return x

print(f(1))

print(f(2))

Produces ...

[1]

[1, 2]

Reason: default value for a parameter is part of the function object →
retains its value across calls

90 / 251

Functions

Keyword Arguments

Long parameter lists ...

Easy to confuse parameters

Unreadable

Unmaintainable

Function call with keyword arguments

def velocity(length_m, time_s):

return length_m / time_s

v = velocity(2, 12) # what?

v = velocity(time_s=2, length_m=12)

→ Very obvious to the reader!

91 / 251

Functions

Local and Global Variables

Best explained using examples ...

x only visible/alive inside f()

def f():

x = 100

return x

Error: no x found anywhere

def f():

return x

Using x from global scope

x = 100

def f():

return x

x defined globally when f()

called first time

def f():

global x

x = 100

...

92 / 251

Exercises: Lists, Loops, Functions

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

93 / 251

Exercises: Lists, Loops, Functions

Exercises

1 Modify the prime number detection program from one of the previous
exercises: make the prime number detection a function, and call the
function instead. The function (is prime() is a likely name) takes a
number, and returns a boolean value as appropriate.

2 Write a function uniq() that takes a sequence as input. It returns a
list with duplicate elements removed, and where the contained
elements appear in the same order that is present in the input
sequence. The input sequence remains unmodified.

3 Write a function join() that takes a string list strings and a string
separator as parameter. It joins strings together into a single
string, using separator as a separator. For example,

join([’Hello’, ’World’], ’-’) returns ’Hello-World’

join([’Hello’], ’-’) returns ’Hello’

94 / 251

More About Strings

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

95 / 251

More About Strings

String Delimiters

Delimiters: double quotes (”...”) or single quotes (’...’), as needed

>>> ’spam eggs’ # single quotes

’spam eggs’

>>> ’doesn\’t’ # use \’ to escape the single quote...

"doesn’t"

>>> "doesn’t" # ...or use double quotes instead

"doesn’t"

>>> ’"Yes," he said.’

’"Yes," he said.’

>>> "\"Yes,\" he said."

’"Yes," he said.’

>>> ’"Isn\’t," she said.’

’"Isn\’t," she said.’

96 / 251

More About Strings

Escape Sequences

Newline, embedded in string

>>> print(’first line\nsecond line’)

first line

second line

More (but not all) escape sequences

\n Linefeed, ASCII 10
\r Carriage return, ASCII 13
\t Tab
\b Backspace
\0 ASCII 0 in octal
\130 ASCII 88 (’X’) in octal
\x58 ASCII 88 (’X’) in hexadecimal

97 / 251

More About Strings

Raw Strings

Unwanted escaping (Doze pathnames)

>>> print(’C:\some\name’)

C:\some

ame

>>> print(r’C:\some\name’)

C:\some\name

Unwanted escaping (regular expressions)

regex = re.compile(r’^(.*)\.(\d+)$’)

98 / 251

More About Strings

Multiline Strings

Escaping newlines is no fun ...

print("""\

Bummer!

You messed it up!

""")

will produce ...

Bummer!

You messed it up!

Note how the initial newline is escaped → “line continuation”

Newline must immediately follow backslash

99 / 251

More About Strings

More String Tricks

String literal concatenation

>>> ’Hello’ ’ ’ ’World’

’Hello World’

String literal concatenation (multiple lines)

>>> (’Hello’

... ’ ’

... ’World’)

’Hello World’

100 / 251

More About Strings Formatting

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

101 / 251

More About Strings Formatting

C-Style Formatting (1)

Good old C: %[flags][width][.precision]type

Program

int i = 42;

float f = 3.14159265359;

printf("%07d, %8.4f\n", i, f);

Output

0000042, 3.1416

Same in Python, using the % operator

>>> ’%07d’ % 42

’0000042’

>>> ’%07d, %8.4f’ % (42, 3.14159265359)

’0000042, 3.1416’

102 / 251

More About Strings Formatting

C-Style Formatting: Conversions

Frequently used conversions

s String
c Single character
d Integer (decimal)
o Integer (octal)
x Integer (hexadecimal lowercase)
X Integer (hexadecimal uppercase)
f Floating point, exponential format (lowercase)
F Floating point, exponential format (uppercase)
% The % sign itself

103 / 251

More About Strings Formatting

C-Style Formatting: Flags

Frequently used flags

Octal or hex integer conversions: 0x... prefixes
0 Pad with ’0’ characters
- Left alignment
+ Print sign even if positive

(space) Print space in place of sign if positive

104 / 251

More About Strings Formatting

C-Style Formatting: Examples

>>> ’%#5X’ % 47

’ 0X2F’

>>> ’%5X’ % 47

’ 2F’

>>> ’%#5.4X’ % 47

’0X002F’

>>> ’%#5o’ % 25

’ 0o31’

>>> ’%+d’ % 42

’+42’

>>> ’% d’ % 42

’ 42’

>>> ’%+2d’ % 42

’+42’

>>> ’% 4d’ % 42

’ 42’

>>> ’% 4d’ % -42

’ -42’

>>> ’%04d’ % 42

’0042’

105 / 251

More About Strings Formatting

The format Method

Problems with C-style formatting

Not flexible enough (as always)

Positional parameters only

Parameter position must match occurence in format string

A better (?) way of formatting

>>> ’0 {0:05d}, 1 {1:8.2f}, 0 again {0}’.format(42, 1.5)

’0 00042, 1 1.50, 0 again 42’

>>> ’a {a:05d}, b {b:8.2f}, a again {a}’.format(a=42, b=1.5)

’a 00042, b 1.50, a again 42’

More → RTFM

106 / 251

More About Strings Miscellaneous String Methods

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

107 / 251

More About Strings Miscellaneous String Methods

Batteries Included: Checks

Lots of small checks (returning boolean) — for example ...

’...’.isspace(): contains only whitespace

Character types

’...’.isalpha()

’...’.isalnum()

’...’.isdigit()

Case tests

’...’.isupper()

’...’.islower()

’...’.isidentifier(): a valid python identifier (e.g. variable
name)

Lots of others → save work and RTFM prior to coding

108 / 251

More About Strings Miscellaneous String Methods

Batteries Included: Search

Substring search ...

’...’.count(s): number of occurences of s

’...’.startswith(s), .endswith(s)

’...’.find(sub[, start[, end]]): find sub, starting at start
(default 0), ending at end (default len())

end is exclusive → ’...’[start:end]

Returns index, or -1 if not found

’...’.index(sub[, start[, end]]): like find, but raises
exception if not found

’...’.rfind(sub[, start[, end]]): from the end

’...’.rindex(sub[, start[, end]]): from the end

109 / 251

More About Strings Miscellaneous String Methods

Substring Search: Examples

>>> ’/etc/passwd’.startswith(’/etc/’)

True

>>> ’notes.txt’.endswith(’.txt’)

True

>>> ’this is a thistle with many thorns’.count(’th’)

4

>>> ’haystack containing needle and straw’.find(’needle’)

20

>>> ’haystack containing needle and straw’.find(’mouse’)

-1

>>> ’haystack containing needle and straw’.index(’mouse’)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: substring not found

110 / 251

More About Strings Miscellaneous String Methods

Split and Join (1)

Very common operations

Error prone → writing them is a major annoyance

Off-by-one errors

split() and join()

>>> ’one:two:three’.split(’:’)

[’one’, ’two’, ’three’]

>>> ’:’.join([’one’, ’two’, ’three’])

’one:two:three’

Not off-by-one

>>> ’:’.join([])

’’

>>> ’:’.join([’one’])

’one’

111 / 251

More About Strings Miscellaneous String Methods

Split and Join (2)

Split at most 2 fields

>>> ’one:two:three:four’.split(’:’, 2)

[’one’, ’two’, ’three:four’]

>>> ’one:two:three:four’.rsplit(’:’, 2)

[’one:two’, ’three’, ’four’]

Real life example: /etc/passwd

>>> username,rest = ’jfasch:x:1000:...’.split(’:’, 1)

>>> username

’jfasch’

>>> rest

’x:1000:1000::/home/jfasch:/bin/bash’

112 / 251

More About Strings Strings and Encoding

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

113 / 251

More About Strings Strings and Encoding

Character Encodings

Problem ...

Files (and networks, and ...) contain arbitrary bytes

Files don’t have an idea of their content

→ Content can be anything

Raw bytes
Plain 7-bit ASCII
ISO 8859-1
One of 2156 Chinese (multibyte) character sets
One of 1375 Japanese (multibyte) character sets
UTF-8, UTF-16, UTF-32
Many many more ...

Solution ...

Unicode — one encoding to rule them all

Internally, Python strings are sequences of Unicode code points

114 / 251

More About Strings Strings and Encoding

Strings and Encodings

Where does the data come from and go to?

Programmer has to know what the source contains, and act
accordingly

Raw bytes → create bytes objects

Strings → which encoding?

Email: MIME headers (→ email module)
Files: specify encoding parameter at file object creation (→ later)
Otherwise: read byte data and convert to string objects

At the programmer’s responsibility!

Has always been programmer’s responsibility

Python 3 just doesn’t let you mix str and bytes

115 / 251

More About Strings Strings and Encoding

From Raw Bytes to Strings (1)

Pre-Unicode: ISO/IEC 8859-1 (“Latin-1”) for Mid-European alphabet

Jörg, as read from a file with unknown encoding

>>> joerg_raw = b’J\xf6rg’

>>> type(joerg_raw)

<class ’bytes’>

File happens to be Latin-1 encoded

\xf6 is “ö” in Latin-1

... but that information isn’t there → binary

116 / 251

More About Strings Strings and Encoding

From Raw Bytes to Strings (2)

Transformation to string should be done as early as possible

Everything’s clear if one knows what’s in

→ Transformation to Unicode (rules them all)

→ Nobody has to know anymore what’s in

Transfer raw bytes into string

>>> joerg = str(joerg_raw, encoding=’iso-8859-1’)

>>> type(joerg)

<class ’str’>

>>> joerg

’Jörg’

117 / 251

More About Strings Strings and Encoding

From Strings to Raw Bytes

Internal string representation is Unicode

No-one cares (has to care)

Unicode is a set of numbers, not a concrete encoding

“ö” is obviously multibyte in UTF-8

>>> joerg.encode(’utf-8’)

b’J\xc3\xb6rg’

“ö” is unknown in China

>>> joerg.encode(’big5’)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

UnicodeEncodeError: ’big5’ codec can’t encode

118 / 251

More About Strings Strings and Encoding

Source File Encoding

Question: how are string literals encoded?

Default: ASCII

→ umlauts not properly encoded in strings

Unless otherwise specified

Explicit source encoding

#!/usr/bin/python3

-*- encoding: utf-8 -*-

print(’Jörg’)

119 / 251

Exercises: Strings

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

120 / 251

Exercises: Strings

Exercises

1 Write a program that receives any number of arguments and prints
them out right justified at column 20.

121 / 251

More on Lists

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

122 / 251

More on Lists

List Access

In addition to sequence access ...

L.append(elem): append elem to the list

L.extend(l): extend L with another sequence l

L.insert(i, elem): insert elem at position i (same as L[i:i] =

elem)

L.pop(i): remove element at i from the list (and return its value)

L.sort(): sort the list in place. Elements must be comparable →
careful with mixed lists!

L.reverse(): reverses the list in place

sorted(L): return a sorted copy of the list

reversed(L): returns a reversed copy of the list

123 / 251

More on Lists

List Methods: Examples

>>> l = [3, 2, 5]

>>> l.append(3)

>>> l

[3, 2, 5, 3]

>>> l.extend([3, 2])

>>> l.sort()

>>> l

[2, 2, 3, 3, 3, 5]

>>> l.reverse()

>>> l

[5, 3, 3, 3, 2, 2]

>>> sorted(l)

[2, 2, 3, 3, 3, 5]

124 / 251

More on Lists

List Comprehension

The best way to write good code is to write as little code as possible ...

Best explained by example

>>> [i**2 for i in [1, 2, 3]]

[1, 4, 9]

Traditional alternative

def square_numbers(numbers):

ret = []

for i in numbers:

ret.append(i**2)

return ret

sqn = square_numbers([1,2,3])

125 / 251

More on Dictionaries

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

126 / 251

More on Dictionaries

Dictionaries

Associative arrays ...

Stores pairs of key and value

Keys are unique

→ no two keys with the same value can exist in the same dictionary
object

Fast lookup

Internally realized as a hash table

Keys are not sorted
No deterministic iteration possible

127 / 251

More on Dictionaries

Dictionary Access

d[key] = value Insert (or overwrite) value under key
d[key] returns value of key (or raises exception)
d.get(key) returns value of key (or None if not there)
d.get(key,defval) returns value of key (or defval if not there)
del d[key] remove entry for key (exception if not there)
d.keys() iterable over keys
d.values() iterable over values
d.items() iterable over data as (key,value) tuples
len(d) number of entries (as with all non-scalar types)
d.setdefault(key,defval) return value if there, else insert defval and return that
d.update(other) merge dictionary other into this
key in d does key exist in d?
key not in d does key not exist in d?

128 / 251

More on Dictionaries

Examples: Simple Access

Literal, insertion, access

>>> d = {} # empty

>>> d = {’one’: 1, ’two’: 2}

>>> d[’one’]

1

Nothing there

>>> d.get(’one’)

1

>>> d.get(’three’)

None

>>> d[’three’]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: ’three’

129 / 251

More on Dictionaries

Examples: Shortcuts

Shortcuts for what would otherwise be too much code ...

Default without modification

>>> d.get(’three’, 3)

3

>>> d.get(’three’)

None

Default with modification

>>> d.setdefault(’three’, 3)

3

>>> d[’three’]

3

130 / 251

More on Dictionaries

Dictionary Iteration (1)

Iteration is a fundamental concept in Python

... even more so in Python 3

→ compatibility alert!

Python 3

>>> d.keys()

dict_keys([’three’, ’one’, ’two’])

>>> list(d.keys())

[’three’, ’one’, ’two’]

Python 2

>>> d.keys()

[’three’, ’two’, ’one’]

>>> d.iterkeys()

<dictionary-keyiterator object at 0x7ff2e8753418>

131 / 251

More on Dictionaries

Dictionary Iteration (2)

Iteration over values

>>> list(d.values())

[3, 1, 2]

>>> list(d.items())

[(’three’, 3), (’one’, 1), (’two’, 2)]

Wait: d.item() lets me iterate over tuples ...

Why shouldn’t I use tuple unpacking then?

The entire power of Python

for key, value in d.items():

...

132 / 251

More on Dictionaries

Building Dictionaries

>>> d = {}

>>> d = {1: ’one’, 2: ’two’}

>>> d = dict()

>>> d = dict({1: ’one’, 2: ’two’})

>>> d = dict([(’one’, 1), (’two’, 2), (’three’, 3)])

133 / 251

More on Sets

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

134 / 251

More on Sets

Sets

Unordered collection of distinct objects

→ set in a mathematical sense

Membership tests

Addition and removal of elements

Mathematical operations, like ...

Intersection
Union
Difference

135 / 251

More on Sets

Operations on Sets (1)

Test operations

x in s Is x member of s
x not in s in, negated
s1 == s2 True if both contain the same elements
s1 != s2 ...
s.isdisjoint(other) Does s have no elements in common with other?
s1 <= s2 Is s1 a subset of s2?
s1 < s2 Is s1 a strict subset of s2?
s1 >= s2 Is s1 a superset of s2?
s1 > s2 Is s1 a strict superset of s2?

136 / 251

More on Sets

Operations on Sets (2)

Building sets from other sets

s1 | s2 Union
s1 & s2 Intersection
s1 - s2 Difference
s1 ^ s2 Symmetric difference

All operations available as |= (for example)

Constructing sets

>>> s = {1, 2, 3}

>>> s = set([1, 2, 3]) # ... or any iterable

137 / 251

File I/O

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

138 / 251

File I/O

Python 2 vs. Python 3

Encoding, again: incompatibility alert!

Python 2 already had types str and bytes

... it just didn’t make a difference

Files are inherently binary, at the lowest level

... and so were Python 2’s files

Python 3 won’t let you mix str and bytes

Hard rule: “Transform to string as early as possible”

=⇒ Transformation must be done inside file I/O

=⇒ Files know about their encoding

=⇒ Python 2 vs. Python 3

139 / 251

File I/O

Opening Files

Files are opened to obtain a handle

f = open(’/etc/passwd’)

f refers to an open file

Buffered IO (as stdio in C)

Read-only (the default)

Python 3: UTF-8 encoded (the default, unless otherwise specified)

→ I/O is done in units of strings

Specifying an encoding

f = open(’/etc/passwd’, encoding=’ascii’)

140 / 251

File I/O

Reading Files

f.read() reads entire file content
f.read(n) reads n characters/bytes
f.readline() reads a line (including the terminating linefeed)
f.readlines() reads entire file → list of lines

Note the end-of-file condition

while True:

line = f.readline()

if len(line) == 0:

break

print(line)

Shorter but less resource-friendly

for line in f.readlines():

print(line)

141 / 251

File I/O

Reading Files: Pythonic

Iteration is a central theme in Python

Readability

“Iterable”: anything that can be iterated

Many things can be iterated

Fine-tunable behaviour and performance

Why shoudn’t we iterate files?

for line in f:

print(line)

142 / 251

File I/O

Writing Files (1)

Open file write-only

f = open(’/tmp/some-file’, ’w’)

Writing arbitrary content

f.write(’arbitrary content’)

Writing multiple “lines”

f.writelines([’one\n’, ’two\n’])

Using print(), linefeed added automatically

print(’one line (with automatic linefeed)’, file=f)

143 / 251

File I/O

Writing Files (2)

The beauty of iteration (again) ...

writelines() does not add linefeed (probably a misnomer)

Items can come from any iterable

→ Very cool!

Copying a file the Pythonic way

src = open(’/etc/passwd’, ’r’)

dst = open(’/tmp/passwd’, ’w’)

dst.writelines(src)

144 / 251

File I/O

File Modes

Available mode characters

r open for reading (default)
w open for writing, truncating the file first
x open for exclusive creation, failing if the file already exists
a open for writing, appending to the end of the file if it exists
b binary mode (no encoding and decoding)
t text mode (default)
+ open a disk file for updating (reading and writing)

Combinations and their meanings

w+ read/write/truncate
r+ read/write (write pointer at beginning)
a+ read/write (write pointer at end)

145 / 251

File I/O

Text vs. Binary Mode

Python 3 is Unicode clean — for file I/O this means ...

Cannot pass bytes to a file opened in text mode

Cannot pass str to a file opened in binary mode

Unless otherwise specified (mode=’b’), files are in text mode

Python 2 is not Unicode clean

mode=’b’ means “No stupid CR/LF conversion on Doze”

bytes or str, noone cares

146 / 251

File I/O

Standard Streams

Good Ol’ Unix ...

Number POSIX Macro Python equivalent

0 STDIN FILENO sys.stdin

1 STDOUT FILENO sys.stdout

2 STDERR FILENO sys.stderr

Interaktive Shell: all three associated with terminal

Standard input and output used for I/O redirection and pipes

Standard error receives errors, warnings, and debug output

=⇒ Windows-Programmers: no errors, warnings, and debug output to
standard output!!

Error and debug output goes to standard error

print(’An error occurred’, file=sys.stderr)

147 / 251

Exercises: Strings, Files, ...

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

148 / 251

Exercises: Strings, Files, ...

Exercises (1)

1 Write a program wc.py that takes a filename from the commandline
and counts

Lines
Words
Characters

and then outputs the gathered statistics to stdout

2 Write a program revert.py that takes a filename from the
commandline, and outputs every line of the file with the line’s
characters reversed. (Take care to strip off the linefeeds, or otherwise
the linefeed will come first in the reversed line.)

3 Write a program distill.py that takes a filename from the
commandline, and outputs only those lines that are not empty or
don’t entirely consist of a Python style comment.

149 / 251

Exercises: Strings, Files, ...

Exercises (2)

1 Write a program user.py that takes one or more usernames from the
commandline, looks them up in /etc/passwd, and prints out the user
records one after the other. The program should be optimized for
speed and read /etc/passwd only once. The user records are
pre-parsed as follows: the metadata (UID, home directory, etc.) go in
a dictionary

{ ’uid’: 1000,

’gid’: 1000,

’home’: ’/home/jfasch’,

’shell’: ’/bin/bash’

}

The user records are sorted into another dictionary, with the user’s
login name as the key. It is that dictionary where the lookup is
performed.

150 / 251

What Else ...

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

151 / 251

What Else ... Function Objects

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

152 / 251

What Else ... Function Objects

What’s a Function?

First: what’s a variable?

A name that refers to
something (here: an integer
object)

Created at first assignment

i = 1

Functions are no different ...

The function’s name refers
to a function object

... it’s just that object
creation is done differently

def square(number):

"""

return square

of the argument

"""

return number**2

153 / 251

What Else ... Function Objects

Function Objects?

square is a name that happens to refer to a function object ...

Object and its attributes

>>> square

<function square at 0x7fca2c785b70>

>>> square.__doc__

’\n return square\n\tof the argument\n\t’

The “()” Operator

>>> square(3)

9

154 / 251

What Else ... Function Objects

Function Objects! (1)

Dynamic languages require care

>>> square = 1

>>> square(3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: ’int’ object is not callable

Assign one variable to another
op = square

op(3)

155 / 251

What Else ... Function Objects

Function Objects! (2)

Function as function argument

def forall(op, list):

result = []

for elem in list:

result.append(op(elem))

return result

print(forall(square, [1, 2, 3]))

print(forall(len, ["Joerg", "Faschingbauer"]))

This will output ...

[1, 4, 9]

[5, 13]

Batteries included: Python built-in function map

156 / 251

What Else ... Iteration and Generators

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

157 / 251

What Else ... Iteration and Generators

Iteration in Python

for¸ loops are very common in Python

They operate on iterators

Just about any composite data type is iterable

Lists
Dictionaries
Strings
Files
...

158 / 251

What Else ... Iteration and Generators

What’s an Iterator?

An iterator is an object that yields a data stream ...

The next() method yields the next element in the stream

If there is no next element, it raises the StopIteration exception

Question: where do iterators come from?
Answer: they are made by iterables

159 / 251

What Else ... Iteration and Generators

What’s an Iterable?

Iterables are objects that support iteration (Gosh!)
Iterables that are built into Python are for example ...

Sequence, tuple

Dictionary (iteration yields key/value pairs)

Set

String

File

... and many more ...

160 / 251

What Else ... Iteration and Generators

The Iterator Protocol (1)

Technically speaking ...

An iterable can make an iterator through the iter () method

Not usually done by hand

Done for me by for loop

for elem in iterable:

... do something with elem ...

The interpreter ...

Creates an iterator before entering the loop (→ iter ())

Calls next() on that iterator before every iteration

Terminates the loop when StopIteration is caught

161 / 251

What Else ... Iteration and Generators

The Iterator Protocol (2)

Manually

iterator = iter(iterable)

try:

i = next(iterator)

except StopIteration:

...

Often the calculation of the next element is complicated

→ object state has to be kept manually

Coding iterables is no fun

... at least not without proper language support

162 / 251

What Else ... Iteration and Generators

Generators: Motivation

Examples of complicated iteration ...

Traverse a binary tree in depth-first or breadth-first order

Infinite sets like Fibonacci numbers

Stupid solution:

Store result in a list

Return the list

→ Problem with large iterables (Fibonacci?)

→ Best to generate on-demand

163 / 251

What Else ... Iteration and Generators

Generators: How?

A sample generator

def odd_numbers():

i = 0

while True:

if i%2 != 0:

yield i

i += 1

for j in odd_numbers():

print(j)

164 / 251

What Else ... Iteration and Generators

Observations

odd numbers is iterable

yield is magic

Every function that calls yield is a generator

Each call to next(iterator) (speak: execution of the for body)
continues the function where yield left it.

This is outright genius!

165 / 251

What Else ... Iteration and Generators

More on Generators

Python 2 to 3 transition

range() is a generator in 3

Python 2: returns a (temporary) list

... had to use xrange() to generate

Many more places converted to generators

Standard library helpers

itertools

operator

166 / 251

What Else ... Exercise: Generators

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

167 / 251

What Else ... Exercise: Generators

Exercise: Fibonacci

Write a function that generates an infinite sequence of Fibonacci numbers!
Make the start values configurable!

168 / 251

What Else ... OO Programming

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

169 / 251

What Else ... OO Programming

Object Oriented Programming

OO Principles

Procedural : there’s data, and there’s code

→ relationship is not aways clear

OO: data and code aggregated together, into classes

→ Methods operate on objects that have members

Encapsulation: implementation is hidden from the public

End effect: you talk about your code in the same way that you program it

170 / 251

What Else ... OO Programming

OO Everywhere

Strings

s = ’Jörg’

enc_s = s.encode(encoding=’utf-8’)

Lists

list = [’Hello’, ’World’]

list.extend([’!’])

Batteries

from http.client import HTTPConnection

connection = HTTPConnection(’www.google.com’)

connection.connect()

171 / 251

What Else ... OO Programming

The class Statement

Defining a class: the class statement

class MakesNoSense:

...

class creates a “class” object (→ Metaprogramming)

MakesNoSense is the name of a variable (that refers to the class
object)

→ like with functions, the class object can be assigned, passed as
parameter, ...

172 / 251

What Else ... OO Programming

The Constructor

class MakesNoSense:

def __init__(self, parameter1, parameter2):

...

mns = MakesNoSense(’Hello’, 666)

init : special method name → constructor

self : the object being initialized/constructed

Python does not require the name self, but it is “good style”. IDE’s
may rely upon it, but no requirement otherwise.

173 / 251

What Else ... OO Programming

Attributes/Members

class MakesNoSense:

def __init__(self, parameter1, parameter2):

self.member1 = parameter1

self.member2 = parameter2

...

print(mns.member1)

mns.member2 = 42

There is no information hiding in Python

Members are visible to outside users

... by default at least

174 / 251

What Else ... OO Programming

Attributes/Members: hiding

class MakesNoSense:

def __init__(self, parameter1, parameter2):

self.__member1 = parameter1

self.__member2 = parameter2

error!

mns.__member2 = 42

Python recognizes ’ ’ as something special

Mangles the name → visible as-is only within class’s methods

175 / 251

What Else ... OO Programming

Methods

A Method is a function that “is called on an object” ...

class MakesNoSense:

def __init__(self, parameter1, parameter2):

self.__member1 = parameter1

self.__member2 = parameter2

def do_make_sense(self, value):

print(’I try to but fail: {} {} {}’.format(

self.__member1, self.__member2, value))

mns = MakesNoSense(1, ’one’)

mns.do_make_sense(’bummer’)

176 / 251

What Else ... Exception Handling

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

177 / 251

What Else ... Exception Handling

Why Exceptions?

Deal:

Return <0 on error

Caller has to check

Caller has to pass error on

def do_much(this, that):

if do_this(this) < 0:

return -1

if do_that(that) < 0:

return -1

return 0

def do_this(this):

if this == 2:

return -1

else:

return 9

def do_that(that):

if that == 5:

return -1

else:

return ’blah’

178 / 251

What Else ... Exception Handling

Exception Handling

Plan is: write less code =⇒ cleaner code

def do_much(this, that):

do_this(this)

do_that(that)

try:

do_much(1, 5)

except MyError as e:

print(’Error:’, e.msg,

file=sys.stderr)

def do_this(this):

if this == 2:

raise MyError(’this is 2’)

else:

return 9

def do_that(that):

if that == 5:

raise MyError(’that is 5’)

else:

return ’blah’

179 / 251

What Else ... Exception Handling

Exceptions

Exceptions are objects ...

Python 2: can be anything

Python 3: must be derived from class BaseException

User defined exception should be derived from Exception

→ Object oriented programming

class MyError(Exception):

def __init__(self, msg):

self.msg = msg

180 / 251

What Else ... Exception Handling

Catching All Exceptions

a_dict = {}

try:

print(a_dict[’novalidkey’])

except: # KeyError

print("d’oh!")

Catches everything no matter what

Hides severe programming errors

→ use only if you really know you want

try:

print(nonexisting_name)

except: # NameError

print("d’oh!")

181 / 251

What Else ... Exception Handling

Catching Exceptions By Type

a_dict = {}

try:

print(a_dict[’novalidkey’])

except KeyError:

print("d’oh!")

NameError (and most others) passes through

... and terminate the program unless caught higher in the call chain

Very specific → best used punctually

182 / 251

What Else ... Exception Handling

Catching Exceptions By Multiple Types

a_dict = {}

try:

print(a_dict[int(’aaa’)])

except (KeyError, ValueError):

print("d’oh!")

(Btw, the exception list is an iterable of type objects)

As always: reflect your intentions

Is the handling the same in both cases?

I’d say very rarely

183 / 251

What Else ... Exception Handling

Storing the Exception’s Value

Many exceptions’ only information is their type

→ “A KeyError happened!”

Sometimes exceptions carry additional information

class MyError(Exception):

def __init__(self, msg):

self.msg = msg

def do_something():

raise MyError(’it failed’)

try:

do_something()

except MyError as e:

print(e.msg)

184 / 251

What Else ... Exception Handling

Order of Except-Clauses (1)

Except-Clauses are processed top-down

→ Very important when exceptions are related/inherited

MyError is a Exception

class MyError(Exception):

def __init__(self, msg):

self.msg = msg

def do_something():

raise MyError(’it failed’)

185 / 251

What Else ... Exception Handling

Order of Except-Clauses (2)

Wrong

try:

do_something()

except Exception as e:

print(’unexpected’)

except MyError as e:

print(e.msg)

MyError is a Exception

→ eats all MyError
objects

→ MyError never
caught

Right

try:

do_something()

except MyError as e:

print(e.msg)

except Exception as e:

print(’unexpected’)

Rule:

Catch the most specific
exception first

186 / 251

What Else ... Modules

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

187 / 251

What Else ... Modules

Modules

Collection of ... well ... objects — e.g. classes, functions, variables

Collected in a dedicated .py file

Pulled in with the import statement

import sys

Searching sys ...

In the directory where the importer lives

Along the PYTHONPATH environment variable

In the Python installation’s module directories

188 / 251

What Else ... Modules

Modules are Objects

import makes a module object available under a name

→ a variable

Contained names accessible through that variable

→ “Namespace”

import sys

...

sys.exit(42)

189 / 251

What Else ... Modules

Other Forms (1)

Pulling in a single symbol

from sys import exit

exit(42)

Massacre ...

from sys import *

exit(42)

Pulls in everything into the importer’s namespace

Well, except those names that start with an underscore

Conflicts easily possible

Importer’s names are overwritten with conflicting names

190 / 251

What Else ... Modules

Other Forms (2)

Changing a module’s name

import sys

my_sys = sys

del sys

Shorter ...

import sys as my_sys

Same with specific imports

from sys import exit as my_exit

my_exit(42)

191 / 251

What Else ... Modules

Packages

Package: collection of modules (and further packages)

“Subnamespace”

import os.path

path = os.path.normpath(’a/../b’)

from os.path import normpath

192 / 251

What Else ... Modules

Executing Modules as Scripts

A module’s name is its filename, with the .py extension stripped

Available to the module in the variable name

Can be used to decide if the module is being imported or executed as
a script

Inside mysupermodule.py

def mysuperfunction(a, b):

...

if __name__ == ’__main__’:

mysuperfunction(sys.argv[1], sys.argv[2]))

193 / 251

What Else ... Modules

Package Structure

package/

+-- __init__.py

+-- subpackage1

| +-- __init__.py

| +-- module1.py

| \- module2.py

\- subpackage2

+-- __init__.py

+-- module1.py

\-- module2.py

Top level directory package/ found in module search path

Each directory has file init .py

Disambiguation
Usually empty

194 / 251

What Else ... Modules

Relative Imports (1)

package/

+-- subpackage1

+-- module1.py

\- module2.py

Problem: inside module1.py, I want to ...

import module2

Not search along the entire module search path

I know that module2 is next to me

from . import module2

195 / 251

What Else ... Modules

Relative Imports (2)

package/

+-- subpackage1

\-- module1.py

\- subpackage2

\-- module1.py

Problem:

subpackage1/module1.py wants to import
subpackage2/module1.py

... and nothing else

from ..subpackage2 import module1

196 / 251

DBAPI 2

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

197 / 251

DBAPI 2

Database Interfaces

There are as many database interfaces for Python as there are databases ...

SQL:

ODBC (generic)

ADO (generic)

MySQL

Oracle

PostgreSQL

Informix

SQLite

...

Others:

BerkeleyDB

...

→ People want a common interface

198 / 251

DBAPI 2

DBAPI 2.0

Programming interface for SQL databases

In fact only a recommendation for database interface authors

... but there’s the BDFL

Defines what a database interface has to have ...

Connection: initial point of all database operations

Cursor : context of a database operation. More than one cursor
possible.

Data types: e.g. sqlite3.Date(1966,6,19)

199 / 251

DBAPI 2

Caveat: Transaction Lifetime

DBAPI module use the underlying database’s “native interface” →
transaction semantics is not portable across different databases
Neutral (DBAPI 2.0) Definition

One connection has at most one transaction → transaction lifetime
dictated by connection

Once a cursor is created, a transaction is started

The connection methods commit() and rollback() close a
transaction

A cursor’s .execute() method creates a transaction if one does not
exist

Deleting a connection triggers a transaction’s rollback() method

→ Don’t forget connection.commit()!

200 / 251

DBAPI 2

Caveat: Isolation

Modifications on different cursors of the same connection are
generally visible to each other

Not all databases implement strong isolation among different
connections

Isolation level settings are specific to database implementations

201 / 251

DBAPI 2: sqlite3

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

202 / 251

DBAPI 2: sqlite3

SQLite3

Lightweight database implementation

No big fat server, no client

Relatively small C library — linkable by programs

Used by ...

Android apps for configuration
Firefox to store history, bookmarks, whatever
...

Extremely cool for ...

Prototyping
Unit testing — In-Memory database

Bundled as DBAPI2 module in Python

203 / 251

DBAPI 2: sqlite3

SQLite3 Connection

Creating a database connection

import sqlite3

dbapi2 = sqlite3

connection = dbapi2.connect(’/tmp/database’)

Observations ...

“Rename” module to dbapi2 to ease porting to other DBAPI2
implementations (not necessary but cool)

dbapi2.connect(’/tmp/database’) creates database if necessary
→ be careful

’:memory:’ creates an in-memory database → cool for use in unit
tests

204 / 251

DBAPI 2: sqlite3

SQLite3: Cursors and Statements

Creating a cursor

cursor = connection.cursor()

Creating a table

cursor.execute(’create table schwammerln (’

’ name text, ’

’ typ text, ’

’ giftig boolean, ’

’ geniessbar boolean)’)

connection.commit()

Observations ...

It’s SQL

Commit is not necessary with SQLite3 — but could be with DBMS
with a higher isolation level

205 / 251

DBAPI 2: sqlite3

SQLite3: Filling the Database

cursor.execute(’insert into schwammerln ’

’values ("Steinpilz", "Roehren", 0, 1)’)

cursor.execute(’insert into schwammerln ’

’values ("Speisetaeubling", "Lamellen", 0, 1)’)

cursor.execute(’insert into schwammerln ’

’values ("Speitaeubling", "Lamellen", 0, 0)’)

cursor.execute(’insert into schwammerln ’

’values ("Eierschwammerl", "Lamellen", 0, 1)’)

cursor.execute(’insert into schwammerln ’

’values ("Teufelsroehrling", "Roehren", 1, 0)’)

(connection.commit() as appropriate)

206 / 251

DBAPI 2: sqlite3

SQLite3: Queries — Result Set

resultset = cursor.execute(

’select * from schwammerln ’

’where typ = "Roehren"’)

for row in resultset:

print row

Output

(u’Steinpilz’, u’Roehren’, 0, 1)

(u’Teufelsroehrling’, u’Roehren’, 1, 0)

A result set is iterable, and thus consumable only once

207 / 251

DBAPI 2: sqlite3

SQLite3: Bind Parameters

Same statement, used repeatedly with varying parameters

Naive implementation: Python string substitution

Can be done better ...

cursor.execute(’select * from schwammerln ’

’where typ = ?’, ("Roehren",))

Native interfaces are generally able to pre-calculate and optimize
(“schedule”) SQL statements

SQL-Injection attacks

208 / 251

DBAPI 2: PostgreSQL

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

209 / 251

DBAPI 2: PostgreSQL

DBAPI 2 Example: Postgres

Does not come with Python installation

→ http://initd.org/psycopg/

Entry point: connect()

Parameters best seen in the C-API documentation
(http://www.postgresql.org/docs/8.3/static/libpq-connect.html)

connect(const char* conninfo): string containing name=value

pairs

→ keyword arguments in psycopg2

import psycopg2

connection = psycopg2.connect(

host=’localhost’,

dbname=’schwammerldb’,

user=’ich’,

password=’secret’)

210 / 251

http://initd.org/psycopg/
http://www.postgresql.org/docs/8.3/static/libpq-connect.html

XML: ElementTree (etree)

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

211 / 251

XML: ElementTree (etree)

SAX and DOM

SAX

Event-driven (elements
start and end)

Commonly used to parse
long streams of
structured data

“De-facto” standard

Available in multiple
languages

Python: xml.sax

DOM: “Document Object
Model”

Document available as a
tree

Programmatically
navigable as a tree

Relatively comfortable

Python: xml.dom

Problems

Only relatively
comfortable
Not Pythonic enough

212 / 251

XML: ElementTree (etree)

ElementTree

xml.etree: Python specific → absolutely comfortable

Seamless integration in Python (→ iteration)

A document is a tree, and trees are lists of lists

XML attributes represented as dictionaries

→ simple!

213 / 251

XML: ElementTree (etree)

A Very Simple Document

Python code

from xml.etree.ElementTree import Element

element = Element("root")

child = Element("child")

element.append(child)

Or alternatively ...

element = Element("root")

SubElement(element, "child")

XML

<root>

<child />

</root>

214 / 251

XML: ElementTree (etree)

Attributes

XML elements have attributes

Python’s XML elements have the attrib dictionary

element = Element("root")

child = SubElement(element, "child")

child.attrib[’age’] = ’15’

child = SubElement(element, "child")

child.attrib[’age’] = ’17’

<root>

<child age="15" />

<child age="17" />

</root>

215 / 251

XML: ElementTree (etree)

Text (1)

In XML documents, free text is permitted ...

Inside one element

After one element, but before the start of another element

Accordingly, Python elements have members ...

element.text

element.tail

No text → None

216 / 251

XML: ElementTree (etree)

Text (2)

element = Element("root")

child = SubElement(element, "child")

child.text = ’Text’

child.tail = ’Tail’

<root><child>Text</child>Tail</root>

Careful with indentation

Whitespace, linefeed etc. is text, no matter what

str.strip() may be helpful

217 / 251

XML: ElementTree (etree)

Writing XML Documents

We have created Element objects

Added child elements

Now how do we create XML?

Wrap into ElementTree — a helper

from xml.etree.ElementTree import ElementTree

tree = ElementTree(element)

tree.write(sys.stdout) # oder file(..., ’w’)

Output is very tight

Text is preserved as-is

Pretty output would be incorrect

Linefeed and indentation is text

218 / 251

XML: ElementTree (etree)

Reading XML Documents

This is simple ...

from xml.etree.ElementTree import parse

tree = parse(sys.stdin)

for child in tree.getroot():

age = child.attrib.get(’age’)

if age is not None:

print age

if child.text is not None:

print child.text

219 / 251

Test Driven Development

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

220 / 251

Test Driven Development Test Driven Development

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

221 / 251

Test Driven Development Test Driven Development

Test Driven Development

A simple idea ... but first the problem ...

New code is written and tested since ages

Bugs are fixed until it works
Testing mainly done manually
Standalone test programs, or ...
... mostly the entire target application

Existing code breaks once it is modified (law of nature)

Breakage not easily detected
Fear!
=⇒ nobody ever modifies existing code
=⇒ software starts to rot once it has been written

222 / 251

Test Driven Development Test Driven Development

Development — Traditional Approach

Traditional Approach

Think about the design

Come up with a decision

Code it

See if it works

Fix

(etc.)

223 / 251

Test Driven Development Test Driven Development

Traditional Approach — Problems

So what are the core problems?

Before a modification ...

How do I know my solution will be ok?
How will it feel? Will it be usable?
Am I (and others) comfortable with it?

After a modification ...

It is impossible to decide if everything still works
What is the definition of everything?
What is the definition of works?
What are the costs to decide that?
What are the costs if we do only manual testing?
What is the state of the code? What about refactoring?

After the release ...

We curse at the testers that they do a bad job!

224 / 251

Test Driven Development Test Driven Development

Test Driven Development — Principles (1)

What if we were able to test everything automatically?

Modifications could be done without any fear

“Regression”: new term for that kind of bug
Something that worked before a modification but doesn’t afterwards

Ongoing refactoring possible → no code smells

New features would bring new tests

The Everything grows over time

But: the Everything is now defined as ...

Production code

Test code

225 / 251

Test Driven Development Test Driven Development

Test Driven Development — Principles (2)

Test Driven Development

New “development process”

Tests come first

→ “Requirements phase”

Have you ever read a requirements
document after coding was done?

→ Tests fail initially

226 / 251

Test Driven Development Test Driven Development

Test Driven Development — Benefits? Caveats?

What does it bring, what does it cost?

More work initially — so much for sure

Investment into the future

More code can be done

Not at all easy to convince people of it

Big caveat

Tests belong to the code

No way moving on without!

=⇒ Have to take care of the tests

227 / 251

Test Driven Development xUnit — How it Works

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

228 / 251

Test Driven Development xUnit — How it Works

Origins

Unittest frameworks — where they come from

SUnit, 1998. By Kent Beck in Smalltalk.

JUnit, 2001. Ported from Smalltalk to Java, by Kent Beck and Erich
Gamma.

Gained wide popularity by Kent Beck’s book

From then on ported to almost every language — commonly known
as xUnit

Python: PyUnit, then became part of the Python library, module
unittest

C++: Boost.Test, CppUnit, Google Test, ...
All the newer languages: Ruby, Rust, Go, ...
COBOL

229 / 251

Test Driven Development xUnit — How it Works

xUnit Structure — Overview

TestCase: one test that is written. Here’s the most code.

TestSuite: composition of many test cases, for structural purposes.

Fixture: defined environment of a TestCase

TestRunner: runs a Test (Suite or Case), collects and presents
results.

230 / 251

Test Driven Development xUnit — How it Works

xUnit: TestCase and TestSuite

Suites: recursive test structure

Derive from TestCase to implement tests

Use TestSuite objects to structure tests hierarchically

Run a subset of all tests

The Composite Pattern in use ...

Not available in every xUnit incarnation

231 / 251

Test Driven Development xUnit — How it Works

xUnit: TestCase and Fixture

Fixture: defined test environment

Multiple tests start from the same state → common Fixture

Method setUp() — establishes known state to start tests from.
Examples: well-known/required database content, files have to be
present, ...

Method tearDown() — deallocates resources. For example: cleanup
database, remove files, ...

Implementation:

Python: class that
contains test methods

C/C++: weird macros
to setup objects and
associations

232 / 251

Test Driven Development xUnit — How it Works

xUnit: TestCase and Assertions

Test code checks for failure: Assertions

Varying multitude of assertions to draw from

Records test failure in some test result, for later reporting

Abort the test case → failure

Variation: non-fatal assertions

container.insert(100)

container.insert(200)

self.assertEqual(len(container), 2)

self.assertAlmostEqual(1/3, 0.333, 2)

233 / 251

Test Driven Development xUnit — How it Works

xUnit: TestRunner

Running all tests: TestRunner

TestRunner usually instantiated in main programs

During running a test ...

Fixtures are prepared (setup(), tearDown())
Results are collected
Failure or success

After all tests have run ...

The result has to be presented

(Sidenote: do you know the Strategy Pattern?)

234 / 251

Test Driven Development Test Driven Development

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

235 / 251

Test Driven Development Test Driven Development

The “Process”

Test Driven Development is ... well ...

Not a full process

The basis of all “agile” processes

Anybody doing Scrum these days?

It’s Software done right

It’s about continuous investment and
taking out

236 / 251

Test Driven Development Test Driven Development

The “Requirements Phase”, New Code

Writing new code in a test driven way ...

Nothing is clear from the beginning

... not even the problem

To get hold of the problem ...

Write code that wouldn’t compile
(there’s no solution yet)

... but gives you an impression of how a
solution could look like

Talk to people about proposed solution

→ “Finding the interface”

This is the first test

“Test First Development”

237 / 251

Test Driven Development Test Driven Development

The “Requirements Phase”, Existing Code

Modifying existing code, to add features or change behavior ...

Find the test suite for the module in question

→ structure is important

Add a new test for the new feature, making clear exactly what is
wanted

The new test naturally fails, as always

Modify code

Run all tests

Repeat

238 / 251

Test Driven Development Test Driven Development

Caveats (1)

Take care of your tests! If your tests are suddenly gone, your code is
alone ...

239 / 251

Test Driven Development Test Driven Development

Caveats (2)

Tests are what ensure your code’s value

You can do more valuable code with tests and TDD

Test code is no different from “real” code

→ Subject to bitrot

“Lost Tests Syndrome”: keep your hands off manual test suite
arrangement

→ Varying support from frameworks

240 / 251

Test Driven Development Test Driven Development

Caveats (3)

But:

Nobody tests the tests

false impression: “it’s only tests”

Structure is important

Easy running is important — everybody has to know how

Easy running : avoid big dependencies — nobody will want to setup
database infrastructure

241 / 251

Test Driven Development The unittest Module

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

242 / 251

Test Driven Development The unittest Module

Simplest Example

import unittest

class MyTestCase(unittest.TestCase):

def runTest(self):

self.assertEqual(1, 2)

c = MyTestCase()

unittest.TextTestRunner().run(c)

FAIL: runTest (__main__.MyTestCase)

Traceback (most recent call last):

File "/tmp/x.py", line 6, in runTest

self.assertEqual(1, 2)

AssertionError: 1 != 2

243 / 251

Test Driven Development The unittest Module

Using a Fixture

Problems ...

Cleanup after test failure
Setup before test begin
→ formalize (prepare and release) a controlled environment for the
test body

class MyTestCase(unittest.TestCase):

def setUp(self):

self.__db = create_database()

fill_test_data(self.__db)

def tearDown(self):

remove_database(self.__db)

def runTest(self):

...

c = MyTestCase()

unittest.TextTestRunner().run(c)

244 / 251

Test Driven Development The unittest Module

Multiple Test Cases With Same Fixture

A single runTest() method is not sufficient in most cases

A fixture’s purpose is to serve multiple related test cases

→ test case with multiple test methods

→ Test Suite

class MyTestCase(unittest.TestCase):

def setUp(self): ...

def tearDown(self): ...

def testFeature1(self): ...

def testFeature2(self): ...

suite = unittest.TestSuite()

suite.addTest(MyTestCase(’testFeature1’)

suite.addTest(MyTestCase(’testFeature2’)

unittest.TextTestRunner().run(suite)

245 / 251

Test Driven Development The unittest Module

Auto Recognizing Test Methods

Problems:

Two steps: write test case and add test case

→ /me writes test, but forgets to add to suite

→ Lost Test Syndrome

class MyTestCase(unittest.TestCase):

def setUp(self): ...

def tearDown(self): ...

def testFeature1(self): ...

def testFeature2(self): ...

suite = unittest.TestLoader().\

loadTestsFromTestCase(MyTestCase)

unittest.TextTestRunner().run(suite)

246 / 251

Test Driven Development The unittest Module

The Meat of a Test

Enough structure, now for the real test code ...

class MyTestCase(unittest.TestCase):

def testSomething(self):

self.failIf(1 == 2, "OMG!")

There’s more:

failUnless(2 == 2)

failUnlessEqual(2, 2)

failIfEqual(2, 3)

failUnlessAlmostEqual(2.12345, 2.123, 3)

failUnlessRaises(IOError, file(’/’))

247 / 251

Test Driven Development The unittest Module

Recommendations

A few recommendations, out of personal experience ...

If tests become a burden, then you’ve messed it up!

Tests should live near the code

... but not in it

Code must not use test code!

Structure your tests (test suites) like your package structure

Test First Development — adding tests afterwards is rarely fun

There is no Design for Testability — sound design is always testable.

It’s easy to become an addict!

248 / 251

Further Information

Overview

1 Blahblah
2 Hello World
3 Syntax etc.
4 Variables
5 Datatypes

Numbers
Strings
Complex Datatypes

6 Boolean
7 The if Statement
8 Exercises: Basics
9 while Loops
10 Exercises: While Loop

11 Sequential Datatypes
12 Indexing and Slicing
13 for Loops
14 The range Function
15 References, (Im)mutability
16 Functions
17 Exercises: Lists, Loops,

Functions
18 More About Strings

Formatting
Miscellaneous String
Methods
Strings and Encoding

19 Exercises: Strings

20 More on Lists

21 More on Dictionaries

22 More on Sets

23 File I/O
24 Exercises: Strings, Files,

...

25 What Else ...
Function Objects
Iteration and Generators
Exercise: Generators
OO Programming
Exception Handling
Modules

26 DBAPI 2

27 DBAPI 2: sqlite3

28 DBAPI 2: PostgreSQL
29 XML: ElementTree

(etree)

30 Test Driven Development
Test Driven
Development
xUnit — How it Works
Test Driven
Development
The unittest Module

31 Further Information

249 / 251

Further Information

Python Documentation

The best-documented language that I ever came across ...

python.org: main python site

docs.python.org

Browsable, searchable
Download tarball, unpack, bookmark to local
→ easy offline operation (Javascript must be enabled though)

250 / 251

http://python.org
http://docs.python.org

Further Information

Notes

251 / 251

	Blahblah
	Hello World
	Syntax etc.
	Variables
	Datatypes
	Numbers
	Strings
	Complex Datatypes

	Boolean
	The if Statement
	Exercises: Basics
	while Loops
	Exercises: While Loop
	Sequential Datatypes
	Indexing and Slicing
	for Loops
	The range Function
	References, (Im)mutability
	Functions
	Exercises: Lists, Loops, Functions
	More About Strings
	Formatting
	Miscellaneous String Methods
	Strings and Encoding

	Exercises: Strings
	More on Lists
	More on Dictionaries
	More on Sets
	File I/O
	Exercises: Strings, Files, ...
	What Else ...
	Function Objects
	Iteration and Generators
	Exercise: Generators
	OO Programming
	Exception Handling
	Modules

	DBAPI 2
	DBAPI 2: sqlite3
	DBAPI 2: PostgreSQL
	XML: ElementTree (etree)
	Test Driven Development
	Test Driven Development
	xUnit — How it Works
	Test Driven Development
	The unittest Module

	Further Information

